1,100 research outputs found

    Interest Rates and Their Prospect in the Recovery

    Get PDF
    macroeconomics, interest rates

    The Effects of External Inflationary Shocks

    Get PDF
    macroeconomics, inflation, external inflationary shocks

    The Monetary Mechanism: Some Partial Relationships

    Get PDF

    Cross-Section Analysis and Bank Dynamics

    Get PDF

    Sound propagation over uneven ground and irregular topography

    Get PDF
    The goal of this research is to develop theoretical, computational, and experimental techniques for predicting the effects of irregular topography on long range sound propagation in the atmosphere. Irregular topography here is understood to imply a ground surface that is not idealizable as being perfectly flat or that is not idealizable as having a constant specific acoustic impedance. The interest of this study focuses on circumstances where the propagation is similar to what might be expected for noise from low-attitude air vehicles flying over suburban or rural terrain, such that rays from the source arrive at angles close to grazing incidence. The activities and developments that have resulted during the period, August 1986 through February 1987, are discussed

    Sound propagation over uneven ground and irregular topography

    Get PDF
    Theoretical, computational, and experimental techniques were developed for predicting the effects of irregular topography on long range sound propagation in the atmosphere. Irregular topography is understood to imply a ground surface that: (1) is not idealizable as being perfectly flat, or (2) that is not idealizable as having a constant specific acoustic impedance. The focus is on circumstances where the propagation is similar to what might be expected for noise from low altitude air vehicles flying over suburban or rural terrain, such that rays from the source arrive at angles close to grazing incidence

    Sound propagation over uneven ground and irregular topography

    Get PDF
    The acoustic impedance of the surface coverings used in the laboratory experiments on sound diffraction by topographical ridges was determined. The model, which was developed, takes into account full wave effects and the possibility of surface waves and predicts the sound pressure level at the receiver location relative to what would be expected if the flat surface were not present. The sound pressure level can be regarded as a function of frequency, sound speed in air, heights of source and receiver, and horizontal distance from source to receiver, as well as the real and imaginary parts of the surface impedance

    A rising tide lifts all MBOATs: recent progress in structural and functional understanding of membrane bound O-acyltransferases

    Get PDF
    Acylation modifications play a central role in biological and physiological processes. Across a range of biomolecules from phospholipids to triglycerides to proteins, introduction of a hydrophobic acyl chain can dramatically alter the biological function and cellular localization of these substrates. Amongst the enzymes catalyzing these modifications, the membrane bound O-acyltransferase (MBOAT) family occupies an intriguing position as the combined substrate selectivities of the various family members span all three classes of these biomolecules. MBOAT-dependent substrates are linked to a wide range of health conditions including metabolic disease, cancer, and neurodegenerative disease. Like many integral membrane proteins, these enzymes have presented challenges to investigation due to their intractability to solubilization and purification. However, over the last several years new solubilization approaches coupled with computational modeling, crystallography, and cryoelectron microscopy have brought an explosion of structural information for multiple MBOAT family members. These studies enable comparison of MBOAT structure and function across members catalyzing modifications of all three substrate classes, revealing both conserved features amongst all MBOATs and distinct architectural features that correlate with different acylation substrates ranging from lipids to proteins. We discuss the methods that led to this renaissance of MBOAT structural investigations, our new understanding of MBOAT structure and implications for catalytic function, and the potential impact of these studies for development of new therapeutics targeting MBOAT-dependent physiological processes

    Geoacoustic inversion by mode amplitude perturbation

    Get PDF
    Author Posting. © Acoustical Society of America, 2008. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 123 (2008): 667-678, doi:10.1121/1.2821975.This paper introduces a perturbative inversion algorithm for determining sea floor acoustic properties, which uses modal amplitudes as input data. Perturbative inverse methods have been used in the past to estimate bottom acoustic properties in sediments, but up to this point these methods have used only the modal eigenvalues as input data. As with previous perturbative inversion methods, the one developed in this paper solves the nonlinear inverse problem using a series of approximate, linear steps. Examples of the method applied to synthetic and experimental data are provided to demonstrate the method's feasibility. Finally, it is shown that modal eigenvalue and amplitude perturbation can be combined into a single inversion algorithm that uses all of the potentially available modal data.Funding for the research presented here was provided by the Office of Naval Research, and the WHOI Academic Programs Office
    • …
    corecore